NORMAL CYCLE OF EROSION: W.M.Davis

(UG HONS. 1st Year)

by

Aznarul Islam, Asstt. Prof. in Geography,
Barasat Govt. College
A HIGHLY INFLUENTIAL MODEL OF
RELIEF/LANDFORM EVOLUTION
AND
EVENTUAL PLANATION
INTRODUCED TO
GEOMORPHOLOGY
BY
WILLIAM MORRIS DAVIS
IN
1899
Development of geology as a separate branch of science -1775 to 1830.

Hutton (1726-1797) -uniformitarianism. **John Playfair** (1748-1819) publicised Hutton's theories and added further ideas.

Lyell published the classic textbook, 'Principles of Geology', in 1830-1833.

William Smith (1769-1839)-stratigraphical successions based on fossils

By the middle of the Nineteenth Century, the general geological time scale based on fossils and stratigraphic mapping was established.

Geomorphological studies were advanced by the work of **Agassiz**, who in the 1840s recognised the effects of Pleistocene glaciation in Europe and the USA.

Later **Gilbert** and **Powell** made classical studies on arid erosion in the western USA.

The strongest influence up to 1900 was the work of **W.H. Davis**, an American who worked both in USA and Europe and who first defined the cycle of erosion.
The arrangement of the phenomena of Erosion into an orderly sequence — Cycle — of the development of Landforms.

i.e.,

Landscapes can be arranged in evolutionary sequences illustrative of cyclical changes.
WHY IS IT DESIGNATED AS ‘NORMAL CYCLE OF EROSION’?

NORMAL CYCLE OF EROSION = FLUVIAL CYCLE OF EROSION

Since fluvial action is widespread over the earth’s surface in all areas excepting that of cold and hot deserts. Major parts of the world (except the cold and hot deserts) experience fluvial actions.
ACCORDING TO DAVIS

“LANDFORM IS A FUNCTION OF –

• STRUCTURE (s)
• PROCESS (p) AND
• STAGE (t)"

$L = f (s, p, t)$
STRUCTURE

• Denotes LITHOLOGY, ATTITUDES, COMPOSITION, TEXTURE OF EARTH MATERIALS

PROCESS

Denotes Exogenetic and endogenetic processes

STAGE

• Denotes THE SUCCESSIVE PHASES OF LANDFORM EVOLUTION
LOGICAL COHERENCE

- A LOGICAL OUTGROWTH OF ‘STAGE’ → CONCEPT OF GEOMORPHIC CYCLE

- W.D. THORNBURY’S DEFINITION— “The various changes in surface configuration which a landmass undergoes as the processes land sculpture act upon it”

- An initial surface underlain by a certain type of geologic structure, upon which geomorphic processes operate → sequential development of landforms
UNDERLYING PRINCIPLE OF DAVISIAN CYCLE

- **BASE LEVEL OF EROSION** — A LEVEL BELOW WHICH STREAMS CANNOT ERODE THEIR VALLEY FLOORS.
- **EXTENSION OF SEA-LEVEL BENEATH THE CONTINENTS**
- **A CRITICAL MINIMUM GRADIENT BELOW WHICH A STREAM CANNOT BE REDUCED**
- **SLOPE GENTLY UPWARDS AWAY FROM THE COAST**
- **DAVIS SUPPLEMENTED THE IDEA OF BASE LEVEL WITH THE CONCEPT OF ‘GRADE’ — THE BALANCE BETWEEN EROSION AND DEPOSITION**
- **GRADATION = AGGRADATION — DEGRADATION**
CENTRAL CONCEPT

- Transformation of a recently uplifted landmass into a senile gently sloping land through sequence of erosional episode

- Similarity with concept of ‘entropy maximization’ of 2nd law of thermodynamics

- Initial Upliftment → Potential energy = \(m \times g \times h \)

- Commencement of potential energy and its destruction through cyclical process
Basic Assumptions

- Homogeneous lithology
- Rapid uplift & no erosion during uplift
- Commencement of erosion after upliftment ends
- Long crustal stability
- Area should be humid tropics
Influenced by —

- Hutton’s Cyclic nature of Earth’s History & ‘Uniformitarianism’
 and
- Darwin’s Evolutionary concepts

Davis referred to the whole sequence of transformation of landforms as a cycle of erosion.

By analogy with the divisions of a lifetime he divided his evolutionary series into three stages, metaphorically described as

YOUTH, MATURITY, OLD AGE
CHARACTERISTICS OF YOUNG LANDSCAPE

- Few Consequent Streams with few Large Tributaries
- Headward Erosion by Small Tributaries and Gullies
- Development of V-shaped Valleys
- Lack of Floodplain Development
- Interstream Tracts — wide and poorly drained; development of Lakes and Swamps
- Waterfalls and Rapids exist where stream crosses resistant rock beds
- Stream Meandering may exist on flat, undissected initial surface but are closely confined
- Maximum Altitude → Maximum Potential Energy
The Landscape

W. M. Davis
CHARACTERISTICS OF MATURE LANDSCAPE

- Valleys extend → well-integrated Drainage system
- Adjustment of streams with lithology and structure → Existence of Longitudinal Tributaries along belts of weak rock
- Stream divides sharp and ridge-like → minimum interstream uplands → Maximum Relief at early Maturity
- Attainment of Profile of Equilibrium by master Streams
- Elimination of lakes and waterfalls
- Wide Floodplains at Valley floors
- Conspicuous Meanders – free to shift positions over floodplains
- Width of the Valley floors do not exceed the width of the Meander belts
- Maximum possible Relief
- Topography consists much of Slopes of Hillsides and Valley sides
MODEL OF VALLEYSIDE EVOLUTION

model of valley-side evolution: W. M. Davis
CHARACTERISTICS OF OLD LANDSCAPE

- Tributaries — less numerous than in Maturity but more than in Youth
- Valleys — extremely broad & gently sloping laterally and longitudinally
- Extensive Floodplains with broadly Meandering Streams
- Valley widths — greater than those of the Meander belts
- Stream divides reduce in heights, gently sloping — Residual hills —

MONADNOCKS (after Mt. Monadnock in New Hampshire)

- Lakes, Swamps, Marshes on floodplains, not on interstream areas
- Mass Wasting — dominant over fluvial processes
- Extensive areas are or at near **BASE LEVEL OF EROSION**
The cycle concept of W. M. Davis

(i) Initial surface

(ii) Floodplain

(iii) Initial surface

(b) Effect of differences in available relief

ar = available relief
Graphical Representation of Erosion Cycle

AB, Initial relief; CD, Maximum relief.
The cycle concept of W. M. Davis. He normally described the sequence as depicted on the left although the available relief, i.e. the altitudinal difference between the initial surface and the level at which floodplains begin to form, will clearly have an important effect on landform evolution, as illustrated on the right.
The Ideal Stream Cycle
INTERRUPTIONS IN THE CYCLE

REJUVENATION

Some change causes stream to speed up and cut deeper.

- Uplift of Land
- Lowering of Sea Level
- Greater stream flow

Stream valley takes on youthful characteristics but retains features of older stages as well.

Can happen at any point in the cycle

Leads to development of Polycyclic or Multicyclic Landscapes.
Rejuvenation
CRITICAL APPRAISAL

Merits

- Provides the dogma, the comprehensive theoretical arrangement of all the aspect of DENUDATION
- A Long-term view of Landscape, a geological view
- Though uplift is intermittent, accelerated, retarded at the end Denudation wins → land is worn down to low relief → peneplain
- Development of Drainage Basin is well explained
- Analogy with human geography
- Realistic Analogy with living being

Limitations

- Rapid Uplift— not observed
- Slow period of Erosion can be disrupted by dynamic endogenesis & Climate changes
- Upliftment and Denudation are divided into separate episodes — which is unrealistic
- Long stability of landmass is not possible
- Rock structure may not be homogeneous
- Application of entropy maximisation not possible in open system, i.e, landform
References
1. An outline of Geomorphology by Wooldridge and Morgan
2. Principles of Geomorphology by W.D. Thornbury
3. The Study of Landforms by R.J. Small
4. Geomorphology by Savindra Singh
5. Geomorphology by Enayet Ahmed
Inviting Questions and seeking clarification

Thank you